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Abstract 

In 1933 Gödel ([16]) introduced a modal logic of provability (Si) but left it without 
an intended mathematical model. In [17] Gödel suggested the format "t is a proof of F" 
(t:F) to understand Si. This suggestion is realized in the Logic of Proofs (CP) presented 
in this paper. In CP, proofs are internalized as terms. Three operators application (•), 
choice (+), and proof checker (!) are used to construct terms called proof polynomials from 
atomic terms. CP enables iteration of the internalization of proofs as terms thus allowing 
formulas t: F for any proof polynomial t and any formula F. 

In this paper we present a finite axiomatization of CP in Hubert, Gentzen and natural 
deduction systems and prove normalization theorems. Three completeness properties of 
CP are established: i) proof polynomials represent all operations on proofs invariant with 
respect to the proof system chosen; ii) CP is sound and complete with respect to the 
provability semantics; iii) CP is able to realize any derivation in Si by recovering proof 
polynomials for all occurrences of modality in a given <S4-derivation. Thus CP gives an 
intended semantics for the Gödel's logic of provability Si. 

Logic of Proofs is the underlying structure for intuitionistic logic, some modal, epis- 
temic logics, and typed lambda calculi. In particular, the basic CP propositions t : F 
also can be interpreted as "X-term t of type F". Following Curry-Howard we represent a 
A-term t: F with free variables {x\ :Ai,...,xn:A„} by a natural deduction in CP of the 
form x\: A\,..., xn : An => t: F. CP includes the A-calculi corresponding to intuitionistic 
and modal logics- In addition CP admits A-terms of the form p:(t:F) and in general 
allows arbitrary combinations of ":" and propositional connectives. CP can also be seen 
as a typing system for non-deterministic A-calculi since t: F and t: G are allowed in CP 
for different F and G. Proof polynomials provide a unified semantics for modalities and 
A-terms. Such a unified semantics allows us to consider both modalities and A-terms as 
objects of the same nature. 

"Center for Foundations of Intelligent Systems, Rhodes Hall 625, Cornell University, Ithaca NY, 14853 
email:artemovChybrid.cornell.edu. Research supported by the ARO under the MURI program "Integrated 
Approach to Intelligent Systems", grant number DAA H04-96-1-0341. 



1    Introduction to Logic of Proofs 

In 1932 Kolmogorov ([20]) suggested to understand (propositional) intuitionistic logic Xnt as 
a calculus of problems in classical mathematics. Kolmogorov gave a detailed but informal 
description of his interpretation. In 1933 Gödel ([16]) derived Xnt from the classical notion of 
proof which may be regarded a special case of Kolmogorov's problem solution. Gödel reduced 
Xnt to the classical modal logic of provability Si, which has as axioms all classical tautologies in 
the modal propositional language along with the principles OF —>F, O(F-tG) —> (DF-i-DG), 
OF —>■ OOF, and rules modus ponens F —> G,F \- G and necessitation F \- OF. However, 
Gödel did not give a precise provability model for «S4 itself. Kleene realizability [19], Medvedev 
finite problems [29] (cf. [44], [12]) provide readings oiXnt as a logic of classical problems, but 
neither of these models specify Xnt exactly. 

Another problem arose from GödePs paper [16]: to find an interpretation of provability, 
which complies with «Si. The issue of a provability model for «S4 attracted the attention 
of Kripke [22], Montague [34], Myhill [35],[36], Lemmon [25], Mints [31], Kuznetsov [24], 
Goldblatt [18], Boolos [8],[9] Shapiro [39],[39], Buss [11], and many other logicians. None of 
the semantics suggested serve as a faithful provability model for Si. Some of them do not 
treat the «S4 modality as a provability operator (e.g. [22]), some capture only a fragment of 
Si (e.g. [25]). Semantics from [24], [18], [8], [9] capture some non-54 formulas (e.g. so-called 
Grzegorcsyk scheme) that are not plausible as the principles of the Provability. 

A principal difficulty here is caused by the reflexivity principle OF—)-F of «94, which along 
with the necessitation rule F h OF contradicts the Second Gödel Incompleteness Theorem 
(SGIT). Indeed, a straightforward interpretation of OF as 

UF is provable in a formal system T" 

leads to logics of formal provability incompatible with «S4 (cf.[8],[9]). For example, a reflexivity 
principle OF —► F under an interpretation F = Awedge->A) and D as a provability within T 
becomes a statement Consis T, expressing the consistency of T. A theorem of «S4 D(nF—vF) 
thus expresses an assertion that Consis T is provable in T, which contradicts SGIT. 

The following analysis explains this paradoxical behavior. The arithmetical formula of 
provability Provable (F) for F is provable in T has the form 

"there exists a number x which is the code of a proof of F"1. 

In a given model of first order arithmetic such an x may be nonstandard. In particular, it 
would mean that Provable(F) is true, but there is no "real" T-derivation behind such an x. 
So, Provable(F) is weaker than the intended UF is provable". Hence 

Provable(F) ->• F 

is stronger, than the intended 
uif F is provable, then F". 



This consideration suggests eliminating the existential quantifiers and replacing them by ex- 
plicit operations on proofs. Where should these operations come from? The proof of SGIT 
says more about Provability than □ is able to express. For example, the usual distributivity 
formula 

u{F-> G)-+{UF-> uG) 

is a "forgetful" version of 

"given proofs s and t of F —>■ G and F respectively m(s,t) is a proof of G, where 
m(x, y) is a specific computable function built from the description of a proof sys- 
tem" 

A similar decoding can be done for OF —> OOF: 

"for some specific function c(x) given a proof t of F c(t) returns a proof that t is 
a proof of F" . 

In his Lecture at Zilsel's ([17], cf. [37])) in 1938 (published in 1995) Gödel sketched a 
constructive version of <S4 in which t is a proof of F (t : F) replaced the «Si assertion F is 
provable (OF). Gödel's system of 1938 justifies the reflexivity principle, its propositional part 
admits an exact provability interpretation. However, the question of finding a complete set of 
axioms for a logic of proofs, as well as the question about its ability to realize the entire <S4 
remained unanswered. 

In this paper we realize Gödel's suggestion of 19381 and find a complete system for the 
logic of proofs. This yields a positive solution to the problem of faithful provability semantics 
for Gödel's provability logic of 1933, which in turn proves Kolmogorov's conjecture of 1932 
that intuitionistic logic Int is nothing but a logic of proofs ("problem solutions") for systems 
based on classical logic. 

1.1 Definition.     The language of Logic of Proofs (CP) contains 

the usual language of classical propositional logic 
proof variables xo,...,xn,..., proof constants ao,..., an,... 
functional symbols: monadic !, binary • and + 
operator symbol of the type ""term : formula". 

We will use a, b, c,... for proof constants, and u,v,w,x,y,z,... for proof variables. Terms are 
defined by the grammar 

p ::= xi | ai | \p | pi -p2 | Pi +P2 

'The Logic of Proofs CP was found by the author independently of Gödel's paper [17]. The first presentations 
of CP took place at the author's talks at the conferences in Münster and Amsterdam in 1994. Preliminary 
versions of some of the results of this paper appeared in Technical Reports [4] and [5]. 



We call these terms proof polynomials and denote them by p,r,s,t  By analogy we refer to 
constants as coefficients. Constants correspond to proofs of a finite fixed set of propositional 
Schemas. We will also omit • whenever it is safe. We also assume that (a-b ■ c), (a • b ■ c ■ d), 
etc. should be read as ((a • b) • c), (((a • b) • c) • d), etc. 

Using t to stand for any term and S for any propositional letter, the formulas are defined 
by the grammar 

a ::= 5 | 0\ —>o-2 | <7iAer2 | 0\\la^ \ ->a \ t:a 

We will use A, B, C, F, G, H, X, Y, Z for the formulas in this language, and T, A,... for the 
finite sets (also finite multisets, or finite lists) of formulas unless otherwise explicitly stated. 
We will also use x,y,z,... and p,r,s,... for vectors of proof variables and proof polynomials 
respectively. If s = {s\,.. .,sn} and T = {Fi,.. .,Fn}, then s:T denotes {si'.Fi,.. .,sn:Fn}, 
Vr = F1V...VFn,Ar = F1A...AFn. 

We assume the following precedences from highest to lowest: 

!,-,+,:,-., A, V,-K 

The intended semantics for p: F is 

p is a proof of F, 

which will be formalized in the next section. Note that a proof p is not necessarily deter- 
ministic, i.e. p may be a proof of several different F's. The differences between deterministic 
and nondeterministic proofs are mostly cosmetic. The same proof may be easily considered 
as deterministic, e.g. as a proof of the end formula of the proof tree, and as nondeterministic, 
say as a proof of all intermediate formulas derived within this proof. In an abstract setting 
every nondeterministic proof system can be made deterministic by changing from 

"p proves Fi,..., Fn"       to "(p>i) proves Fi, i = 1,.. .n". 

Moreover, every deterministic proof system may be regarded as nondeterministic by reading 

"p proves FL A ... AFn "       as "p proves each of Fi, i = 1,.. .n". 

The logic of strictly deterministic proof systems was discussed in [2], [3], [23], where it meets 
a complete axiomatization. Such logic is considerably more complicated than CP. It lacks 
some natural closure properties and it is not able to realize any modal logic, in particular 
<S4. The situation here resembles that with the definition of the computable functions. Total 
computable functions (as well as deterministic proof systems) may look more desirable than 
general computable functions (as well as general proof systems without discrimination on the 
basis of determinisity). However, a separate theory of total computable functions lacks the 
elegance and some important closure properties of the theory of general computability. 



The system £PQ. Axioms: 

AO. Axioms of classical propositional logic in the language of CP 
Al. t:F ->■ F "verification" 
A2. t:(F->G)  -+{s:F-+(t-s):G) "application" 
A3. t:F -+\t:(t:F) "proof checker" 
A4. s:F^(s+t):F,     t:F ->• {s+t):F "choice" 

Rule of inference: 

rhF-+G ThF 

Rl. T \- G "modus ponens". 

The system CP is CPQ plus the rule 

R2.      if A is an axiom AO - A4, and c a proof constant, then h c:A      "necessitation" 

Proof constants in CP stand for proofs of "simple facts", namely propositional axioms 
and axioms Al - A4- We define a Constant Specification (CS) to be a finite set of formulas 
ci: Ai,..., cn: An such that c, is a constant, and F{ an axiom AO - A4- Each derivation in 
CP naturally generates a CS consisting of all formulas introduced in this derivation by the 
necessitation rule. 

Note that both CPQ and CP enjoy the deduction theorem and the substitution lemma: If 
T(x,P) h B(x,P) for a propositional variable P and a proof variable x, then for any proof 
polynomial t and any formula F 

T{x/t,P/F)\-B(x/t,P/F). 

For a given constant specification CS under CPIiCS) we mean CPQ plus CS. Obviously, 

F is derivable in CP with a constant specification CS   <=>■   CP(CS) hF   ^   CPQ h f\CS —> F. 

Operations "■" and "!" may work on deterministic as well as on non-deterministic proofs. In 
turn, "+" is a strictly non-deterministic operation. Indeed, by A4 we have s : F At :G —>■ 
(s+t):F A (s+t):G, thus s + t proves different formulas. In principle, there is no restriction 
on the choice of a constant c in R2. In particular, R2 allows to introduce a formula c:A(c), 
or to specify a constant several times as a proof of different axioms from AO - A4. One might 
restrict CP to injective constant specifications only, i.e. only allowing each constant to serve as 
a proof of a single axiom A within a given derivation (although allowing constructions c: A(c), 
as before). Such a restriction would not change the ability of CP to emulate classical modal 
logic, or the functional and arithmetical completeness theorems for CP, though it will provoke 
an excessive renaming of the constants. We choose not to put the injectivity restriction on 



CP: derivations with injective GS's lack some natural closure properties, e.g. it might be the 
case that 1- F and h G but not h F AG. Since proof polynomials denote nondeterministic 
proofs it seems natural that the proof constants should be non-deterministic too. One cannot 
a priori assign a constant to a given axiom from Al - A4 for all derivations in CP: such 
derivations are not closed under substitution. 

No single operator H : " in CP is a normal modality since none of them satisfies the 
property t: (P—>Q) -t(t:P -*t:Q). The usual Kripke semantics for modal logics does not 
work for the Logic of Proofs. These make CP fundamentally different from numerous multi 
modal logics, e.g. the dynamic logic of programs ([21]), where the modality is upgraded by 
some additional features. In turn, in the Logic of Proofs the modality is decomposed into a 
family of proof polynomials: «St is a forgetful projection of CP (see Section 6) 

polymodal logics 

decomposition                               ^upgrading 
Logic of Proofs  Modal Logic     »-    dynamic logic of programs 

logics of knowledge 

Gödel's sketch of the logic of proofs from [17] lacks "+", without which a realization of Si 
cannot be completed. 

Gabbay's Labelled Deductive Systems (LDS) may also be regarded as a natural framework 
for the Logic of Proofs [14]. One of the original motivations of LDS was to elaborate a proof 
interpretation of atoms t: F. In the area of epistemic logics a desire to have a knowledge 
supporting system with justifications in the format t :F was expressed in [6]. The Logic of 
Proofs may be regarded as a basic epistemic logic with explicit justifications. Intuitionistic 
Type Theory by Martin-Löf [27], [28] also makes use of the format * : F with its informal 
provability reading. 

Terms of typed combinatory logic (cf. [45]) may be regarded as proof polynomials in a 
fragment of CP with ->• and • only. To some extend CP as it is presented in this paper may 
be regarded as a combinatory logic system with nondeterministic assignments of terms to 
types and capacities to internalize its own derivations as combinatory terms. Of course, the 
solid provability semantics remains the main distinction of CP. In principle one might rewrite 
CP as a A-term system without proof constants but with a corresponding set of atomic A- 
terms. In a term calculi language such rewriting would mean a transition from a combinatory 



term system to a A-term system of the same strength. From the logic point of view such 
rewriting would mean a change from Hubert style proofs as a source for proof polynomials 
into equivalent natural deduction ones with a bunch of new rules instead. In this paper we 
choose the language of proof polynomials which looks equally close to (or equally distant 
from) the two major applications of CP: modal logic and A-calculus. 

Among the related works there are [23], [41] and [33] all based on the system CP as it was 
presented in [4]. The paper [23] gives a complete axiomatization of the logic of deterministic 
proof systems (i.e. the ones where any proof proves exactly one theorem). The paper [41] 
finds a complete axiomatization of a joint logic of proofs and formal provability. In [33] the 
decidability of the entire CP was first established. 

1.2 Lemma.   (Lifting Lemma) Let 

and let V be a corresponding derivation. Then one can construct a proof polynomial t(x, y) 
such that 

s-.r^yiAhjcptis^-.F. 

Moreover, if 

then one can construct t{y) which is a product of proof constants and variables from y such 
that 

y:Ah£pt{y):F. 

Proof. By induction on the derivation s : T, A I- F. If F = s,- :G,- € s: F, then put t :=!s,- 
and use A3. If F = Dj € A, then put t := yj. If F is an axiom AO - A4, then pick a fresh 
proof constant c and put t := c; by R2, Ft- c: F. Let F be introduced by modus ponens 
from G -¥ F and G. Then, by the induction hypothesis, there are proof polynomials u(s, y) 
and v(s, y) such that u: (G —>• F) and v:G are both derivable in CP from s:V, y: A. By Al, 
s:T,y:A \- (uv) :F, and we put t := uv. If F is introduced by R2, then F = c: A for some 
axiom A. Use the same R2 followed by A3: c: A —v\c: c: A, to get s: T, y: A He: F, and put 
t :=!c. 
-« 

It is easy to see from the proof that the lifting polynomial t(s, y) is nothing but a blueprint 
of a given derivation s:T, A h F. Thus CP accommodates its own proofs as proof terms. The 
necessitation rule 



\- F   =»  h p: F for some proof polynomial p, 

where p is a blueprint of the proof h F is a special case of Lifting. As we can see in Section 
6 CP suffices to emulate all derivations of «Si. 

1.3 Example.     <S4 h (DA A OB) -» O(AAB) 

In CP the corresponding derivation is 

1. A,B\r AAB, by propositional logic 
2. x:A,y:B\-t(x,y): (AAB), by Lifting 
3. r-z:AAy:Jß-^i(x,y):(AAJB),from2. 

1.4 Example.     54 h (üAVGß) -> D(AVB). 

In £P the corresponding derivation is 

1. A-^AVß,      B-fAVB 
2. a: (A -»• A V £?),      6: (5 -> A V B), by necessitation, 
3. x:A-> (a-x):(AVß),from2by A2 
4. y:ß-> (6-y):(AVfi),from2 by A2 
5. ax:(AVß) -»■ (az+&y):(AVß), 
by:(AVB)-> (ax+by):(AVB), by A4 
6. (x:AVy:B)^>-(ax+by):(AVB) 

2    Standard provability interpretation of CP 

The Logic of Proofs is meant to play for a notion of proof a role similar to that played by 
the boolean propositional logic for the notion of statement. In particular, CP enjoys the 
soundness/completeness property: 

CP \~ F       <&     F is true under any interpretation . 

First order Peano Arithmetic VA (cf. [8], [9], [30], [43]) is a natural source of such proof 
systems with Gödel numbers of proofs being a natural instrument of internalizing proofs as 
terms (natural numbers). In principle any system of proofs with a proof checker operation 
capable of internalizing its own proofs as terms (cf.[42]) can provide a model for CP. So, the 
soundness (=>►) does not necessarily refer to the arithmetical models of CP. However, VA is 
convenient for establishing the completeness («=) of CP. Indeed, given CP \f F it suffices to 
deliver one interpretation that makes F false. It turns out that such a counterinterpretation 
can always be chosen from a class of proof systems for VA. 

8 



Within Sections 2 and 5 of this paper under Ai and Si we mean the corresponding classes 
of arithmetical predicates. We will use a,ß,cp,ip,... to denote arithmetical formulas unless 
stated otherwise. We use a new functional symbol iz(p(z) for each arithmetical formula (p(z) 
and assume that t-terms could be eliminated by using the small scope convention (cf. [13]). In 
particular, we assume that VA contains terms for all primitive recursive functions (cf. [43]), 
called primitive recursive terms. Formulas of the form f(x) = 0 where f(x) is a primitive 
recursive term are standard primitive recursive formulas. A standard Si formula is a formula 
3x<p(x, y) where <p{x, y) is a standard primitive recursive formula. An arithmetical formula (p 
is provably Si if it is provably equivalent in VA to a standard Si formula; <p is provably Ai 
iff both <p and -up are provably Si. The term iz<p(z) is called computable if <p(z) is provably 
Si. The term izcp(z) is provably total, if VA proves that there exists a unique z such that 
<p(z). A closed computable term is a computable provably total term izip{z) such that ip(z) 
contains no free variables other than z. Closed computable terms stand for all computable 
"names" for natural numbers. There is an algorithm which for any closed computable term 
iz<p calculates its value, i.e. a natural number n such that VA h iz<p = n. A set of computable 
terms is closed under substitution. The result of substituting a closed computable term into 
a Ai formula is again a Ai formula. 
A proof predicate is a provably Ai-formula Prf(x, y) such that for all cp 

VA h <p   &   for some new     Prf(n, r<p~i) holds. 

A proof predicate Prf(x,y)  is normal if 

1) for every proof k the set T(k) = {/ |  Prf(k,l)} is finite and the function T(k) = 
the code ofT(k) is provably computable, 

2) for every finite set S of theorems of VA, S C T(k) for some proof k. 

For every normal proof predicate Prf there are provably computable terms m(x,y), a(x,y), 
c(x) such that if s, t are closed computable terms, then m(s,t), a(s,t), c(rtn) are again closed 
computable terms and for all arithmetical formulas cp, ip the following formulas are valid: 

Prf{s,r<p^i>^) A Prf(t,r<pn)^Prf(m(s,t),ri>n) 

Prf (s, r<pi)-tPrf{a{8, t),^^),      Prf(t, r^)-+Prf(a(s, i), V) 

Prf (t, ^)^Prf(c(^),rprf(t, ^y). 

For example, m{x, y) is a natural term for the following computable function: 

If for some (p,ip both Prf(x,r(p—^ip~') and Prf(y,rip~l) hold, then take the first z 
such that Prf(z, ripn) and let m(x, y) = z. 

Similarly, a(x, y) is a natural term for the computable function 



the least z such that T(z) D T(x) U T(y). 

Finally, c(x) is a natural term for the computable function: 

Given x recover the term f such that x = rf~l and calculate T(f). Then for every 
<p from T(f) compute lip such that Prf(l(p,rPrf(f,rp~>)~1) (such ly exists since 
Prf(f, r(f~[) is a true Ai formula, therefore provable in VA). Take the first y such 
that T{y) D {l<p | <p G T(/)} and let c(x) = y. 

We assume that a normal proof predicate comes with its own fixed choice of such terms 
771(2,1/), a(x,y), c(x). Note, that the natural arithmetical proof predicate PROOF(x,y) 

"z is the code of a derivation containing a formula with the code t/". 

is an example of a normal proof predicate. 

2.1 Definition. An arithmetical interpretation * of the £P-language has the following 
parameters: 

• a normal proof predicate Prf (with the terms m(x, y), a(x, y), c(x)), 

• an evaluation of sentence letters by sentences of arithmetic, 

• and an evaluation of proof letters by closed recursive terms. 

Let * commute with boolean connectives, (t-s)* = m(t*, s*), (t + s)* = a(t*, s*), (It)* = 
c(rf "^ (t:F)* = Prf(t*,rF*n). Under any interpretation * a proof polynomial t becomes a 
closed computable term t*, an CP-formula F becomes an arithmetical sentence F*. a formula 
(t:F)* is always provably Ai. Note, that VA (as well as any theory containing certain finite 
number of arithmetical axioms, e.g. Robinson's arithmetic) is able to derive any true Ai 
formula, and thus to derive a negation of any false Ai formula (cf. [30]). For a set X of 
£P-formulas under X* we mean the set of all F*'s such that F £ X. Given a constant 
specification CS, an arithmetical interpretation * is a CS-interpretation if all formulas from 
CS* are true (equivalently, are provable in VA). In the functional completeness theorem below 
we will need one more clause of the definition of *: (OF)* = 3yPrf(y, rF*~y). An £P-formula 
F is valid (with respect to the arithmetical semantics) if the arithmetical formula F* is true 
under all interpretations *. F is CS-valid if F* is true under all GS-interpretations *. 

2.2 Theorem.   (Arithmetical soundness of £P0) 
1. IfCPo h F then F is valid. 
2. IfCPo \~ F then VA r- F* for any interpretation *. (strong soundness) 

10 



Proof. The only nontrivial case is establishing the strong soundness of axiom Al: t:F-}F. 
Let * be an arithmetical interpretation, then (t:F —>• F)* is Prf(t*,rF*n) ->■ F*. Consider 
two possibilities. Either Prf(t*,rF*~*) is true, in which case the value n of the term t* is 
indeed a proof of F*, thus VA \- F* and VA h (t:F -»• F)*. Otherwise Pr/(t*, rF*"1) is false, 
in which case being a false Ai formula it is refutable in VA, i.e. VA I—iPrf(t*,rF*n) and 
again PA\-(t:F-> F)'. 
-4 

2.3 Corollary.   (Arithmetical soundness of CP) 
If£P(pS)\-F, then F is CS-valid. 

3    Functional completeness of proof polynomials 

In this section we show functional completeness for the system of proof polynomials in CP, as 
another justification for the basic set of operations •,!, +. the results in this section are not 
pertinent to the rest of the paper so the reader may choose to skip this section. 

Operations on proofs invariant with respect to the choice of a proof system naturally arise 
from the notion of admissible rule in arithmetic. 

3.1 Definition.     A deterministic admissible rule in VA is a figure 

h C\,..., h Cn 

\-G 
(1) 

where C\,.. . ,C„, G are logical formulas such that for every interpretation *, G* is provable 
in VA whenever Ci*,...,C„* are. A (non-deterministic) admissible rule in VA (a.r.) is a 
rule of the kind 

C\   or C2   or   ...   or Cn 

TG , (2) 

where every C,- is a usual deterministic premise h C},..., h C™'. The meaning of (2) is 
that for every interpretation * G* is derivable in VA whenever for some i, 0 < i < n, 
all (Cj)*,..., (C"')* are derivable in VA. Every such rule may be regarded as an implicit 
specification of a proof y of G as a function of proofs xtj's of C^'s. Rule (2) is a propositional 
a.r. in a proof format if all C\ 's and G are formulas in the language of CP. A propositional 
a.r. in a proof format (2) is naturally presented by a valid formula in the language of CP 
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with an additional operator D representing an implicit existential quantifier over proofs2: 

yhxijiCij-tOG (3) 
*   j 

We call such a formula (3) an invariant operation on proofs. 

3.2 Example.     Some examples of invariant operations on proofs: 

i) x:(F-*G)Ay:F^aG, 
ii) x:F -+Ox:F, 
in) x:FAy:G^n(FAG), 
iv) x:FVy:G-+n(FvG). 

For each of these examples there is a proof polynomial p realizing the operator ü in such a 
way that instantiating p inside □ gives a formula derivable in CP: 

i) £P\-x:{F^G)Ay:F^(x-y):G, 
ii) £P\-x:F-*\x:x:F, 
Hi) £P\- x:FAy:G -+t(x,y):(FAG), (from Example 1.3) 
iv) CP\-x:FVy:G->{ax + by):(FvG). (from Example 1.4) 

The following theorem demonstrates that proof existence in any absolute operation on 
proofs can be instantiated with a specific proof polynomial. 

3.3 Theorem.     For any invariant operation on proofs 

yfoijiCij-tnG 
i    i 

one can construct a proof polynomial p(x) such that 

*      3 

Proof.   Let (2) be an invariant operation on proofs, and let us denote 

«'   i 

(OF)* =3yPrf(y,rF^). 
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by C. Since OG —)• G is valid (under all arithmetical interpretations), the formula C —)• G is 
also valid. By the completeness theorem for CP (see Section 5),£PhC->G. By Lifting 1.2 
and Deduction, for a fresh variable y there is a proof polynomial t(y) such that 

CPhy:C^t(y):G. (4) 

3.4 Lemma.   For any formulas A, B one can construct a proof polynomial u(x, y) such that 

CP\~x:AAy:B ->u(x,y):(x:AAy.B). 

Indeed, CP \~ x:A -*lx:x:A, CP h y.B -+\y.y.B. By 1.3, 

CPHx:x:AA\y:y.B^t(\x,\y):(x:AAy:B) 

for an appropriate t, thus 

CP \- x: A A y.B ->• t(lx, \y): (a;: A A y.B). 

3.5 Lemma.   For all formulas A, B there exists a proof polynomial v(x, y) such that 

CP h x: AV'y.B -»• u(x,y) :(x:AVy:ß). 

Similar to the proof of 3.4, using 1.4. 

3.6 Lemma.   One can construct a proof polynomial s{x) such that 

CP\-C->s{x):C. 

Proof.   This lemma is proved by a straightforward induction on the formula 

C— \f /\ xij '• Cij 
*     3 

with the use of 3.4 and 3.5. 
< 

From (4), we have CP h s : C -»■ t(s) : G, and thus from 3.6 we get the desired result 
CP\-C -* t(s) :G. This concludes the proof of 3.3. 
•4 
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3.7 Comment. Whereas (2) requires all three proof connectives, the realization of deter- 
ministic operations of the form (1) does not require "+". 

3.8 Comment. We demonstrated that every invariant propositional operation on proofs 
can be represented by a corresponding proof polynomial. Thus the basic operations •,!, + to 
some extent play for the proofs a role similar to that played by the boolean connectives in 
classical logic where every truth function (total function from {0, l}n to {0,1}) is represented 
by a boolean polynomial. 

4    A sequent formulation of Logic of Proofs 

Throughout Sections 4 - 7 by sequent we mean a pair T =>• A, where T and A are finite sets 
of £P-formulas. Axioms of CPQo are sequents of the form F => F and _L =>• . Along with 
the usual Gentzen sequent rules of classical propositional logic, including the cut rule (cf. the 
system GLc from [45]), the system £PQo contains the rules 

A,T => A r =>■ A,t:A  ,     1X 

t:A,T=>A T^A,\t:t:A 

r =► A,t:A  ,        x r =*> A,t:A   , 
(=►+)  ! (=>+) 

r =► A,(t + s):A T =*> A, (s + t):A 

r => A,s:(A-+B)        T =$> A,t:A 

T =» A,(s-t):B 
(=►•) 

As will follow from the proof of 5.1 the rule (=*• •) for CPQo (but not for CPQ) can in fact 
be limited by the condition that A -> B must occur in T, A, without losing any provable 
sequents 

The system CPQ is CPQQ plus the rule 

      (=>c), 
=4> c:A 

where A is an axiom AO - A4 from Section 1, and c is a proof constant. 
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Under CPQ   and CPQ0  we mean the corresponding systems without the rule Cut. 

4.1 Theorem. CPQ0hT=^A iff CP0 \- A r -»• V A, CPQ h T =* A iff CP \-/\T ^ \/A. 

The proof proceeds by a straightforward induction both ways. 

4.2 Corollary.   CP^S)\~F     iff    CPQ0 \~ CS ^ F 

4.3 Definition.   The sequent r =$■ A is saturated if 
1. A ->• 5 G T implies B G T or A G A, 
2. A -> 5 G A implies A G T and 5 G A3, 
3. £:A G r implies A € T, 
4. !i:£:A G A implies i:A G A, 
5. (s + t):Ae A implies s:A G A and t:A G A 
6. (s • i) : B G A implies /or each X —t B occurring as a subformula in T, A either 

s:{X -+B) G A ort:X e A. 

4.4 Lemma. (Saturation lemma) Suppose CPQQ \f Y =$> A. Then there exists a saturated 
sequent T' => A' such that 

1. r C T, A C A', 
2. V =$■ A' is not derivable in CPQQ . 

Proof. A saturated sequent is obtained by the following Saturation Algorithm SAT. Given 
r =$> A, for each formula S from TUA nondeterministically try to perform one of the following 
steps. If none of the clauses 1 - 6 is applicable terminate with success. 

1. if S = (A -*• B) G T, then put A into A or B into T, 
2. if 5 = (A -)■ B) G A, then put A into Y and B into A, 
3. if 5 = t: A G T, then put A into T, 
4. if S =\t:t:A G A, then put t:A into A, 
5. if S = (s +1): A G A, then put both s: A and t: A into A, 
6. if S = (s ■ • -t): B G A, then for each Xi,... Xn such that Xi —>• £? is a subformula in 

T, A put either s: (Xi -¥ B) or t:Xi into A, 
7. if T n A ^ 0 or ± G T, then backtrack. If backtracked to the root node terminate with 

failure. 
The Saturation Algorithm SAT terminates. Indeed, SAT is finitely branching and each 

non-backtracking step breaks either a subformula of T =£■ A or a formula of the type t: F, where 
both t and F occur in T =^ A. There are only finitely many of those formulas, which guarantees 

The clauses concerning other boolean connectives are optional. 
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termination. Moreover, SAT terminates with success. Indeed, otherwise SAT terminates at 
the root node T =>■ A of the computation tree with all the possibilities exhausted and no way 
to backtrack. Then the computation tree T of SAT contains the sequent T => A at the root, 
and CPQQ axioms at the leaf nodes. By a standard induction on the depth of a node in T one 
can prove, that every sequent in T is derivable in CPQQ, which contradicts the assumption 
that CPQQ \f r =S> A. The nodes corresponding to the steps 1-4 and 6 are trivial. Let us 
consider a node, which corresponds to 5. Such a node is labelled by a sequent II =£• 0,st:B, 
and its children are 2n sequents of the form II =>• 0, st: B, Y{,..., Y£, where a = (<Ti..., crn) 
is an n-tuple of O's and l's, and 

Y? _ )   ~-K~,-+B),   if CT, = 0 

'"       \ t:Xi, if (Ti = 1. 

Here X\,..., Xn is the list of all formulas such that Xi —)• B is a subformula of T =£• A. By 
the induction hypothesis all the child sequents are derivable in CPQQ . In particular, among 
them there are 2n_1 pairs of sequents of the form II => ©', s: (X\ —> B) and II =>■ ©', t: X\. 
To every such pair apply the rule ( =>• •) to obtain II =£• & (we assume, that st: B € 6'. 
The resulting 2n_1 sequents are of the form II =>■ Q,st:B, Y{, ...,Y£. After we repeat this 
procedure n — 1 more times we end up with the sequent II =>• 0, st:B, which is thus derivable 
in CPQQ. 

< 

Note, that in a saturated sequent r =£• A the set V is closed under the rules t: X/X and 
X-*Y,X/Y. 

4.5 Lemma.   For each saturated sequent T => A not derivable in CPQ0~ there is a set of 
CP-formulas T (a completion ofT=^A) such that 

1. f is a provably decidable set, for each term t the set I(t) — {X | t:X 6 T} is finite and 
a function from a code4 of t to a code5 of I(i) is provably computable, 

2.rcf, Anf = 0, 
3. ift:Xef, thenX G f, 
4. ifs:(X-+Y) e? andt:XjZ f, then (s-t):Y € f, 
5. ift:X € r, then \t:t:X € f, 
6. ift:X£F and s is a proof polynomial, then (t + s):X € T and (s + t):X € T. 

Proof.   We describe a completion algorithm COM. that produces a series of finite sets of 
£P-formulas r0l Tu T2 .... Let T0 = T. 

For each natural number z > 1 let COM do the following: 

4For example, a Gödel number of t. 
5For example, a canonical number of a finite set of Gödel numbers of the formulas from I(t). 
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if i = 3k, then COM puts 

Ti+1 = Ti [j{(s -t):Y\s:(X->Y),t:Xe r,-}, 

if i = 3Jfe + 1, then COM puts 

ri+1 = Ti[j{\t:t:X \t:X eTi}, 
t 

if i = 3fc + 2, then COM puts 

r,-+i = r,-(J{(s +1) :X, {t + s) :X | t:X G r,-, |s| < t.}6 

Put 

t 

1. It is easy to see that at step i > 0 COM produces formulas of the form t:X with the 
length of t greater than i. This observation secures the decidability of T. Indeed, given a 
formula F of length n wait until step i = n of COM; F € Tn iff F € T. Similar argument 
establishes the decidability of I(t). 

Note that all r,'s are closed under the rules t:X/X and X—>Y,X/Y. The closure under 
X—tY,X/Y is obvious, since it holds for To and COM does not add any new formulas of the 
form X—*Y. To establish the case of t\X/X we use an induction on i. Suppose Ti is closed 
under t: X/X. If i = 3k, then all new formulas at this step are of the form (s • t) :Y with 
s:(X-+Y),t:X e Tt-. By the IH, X^Y,X € I\ and Y € I\-, thus Y € r,-+i. In particular, it 
secures property 3. 

2. The inclusion T C T is clear. Suppose i is the least number such that there exists a 
formula F G T; D A. F cannot be from To, since To = T and A are disjoint. Thus F has 
been introduced by COM at step i > 0. Suppose i — 1 = 3k. Then F — (s • t) :Y and for 
some formula X we have s: (X —*Y),t:X G I\-_i. In such a case X —>Y G To = T, since a 
formula with the implication as the principal connective cannot first appear in Tj with j > 0. 
Suppose (s • t) :Y G A. Then by the saturation properties of the sequent T => A, either 
s: (X-tY) G A or t:X G A. In either case I\_i U A / 0. The remaining clauses follow easily 
from the definitions and saturation properties of the sequent r =>• A. 

4., 5., 6. are guaranteed by the definition of COM. Indeed, if some «/condition is fulfilled, 
then it occurs at step i and COM necessarily puts the then formula into rt+3 at the latest. 
< 

5|s| is the length of s, i.e. a total number of variables, constants, and functional symbols in s. 

17 



5    Consolidated completeness theorem 

In this section we establish completeness and cut elimination theorems for the Logic of Proofs. 

5.1 Theorem.   The following are equivalent 
1. JCPQö i- r =* A, 
2. £pg0 J- r ^ A, 

s. £P0i-Ar-^VA, 
4- for every interpretation * VA \- (/\T —¥ \f A)*, 
5. for every interpretation * (AT -» V A)* is true. 

Proof. The steps from 1 to 2 and from 4 to 5 are trivial. The step from 2 to 3 follows from 
4.1, from 3 to 4 follows from 2.2. The only remaining step is thus from 5 to 1. We assume 
"not 1" and establish "not 5". Suppose JCPQQ \f T =>■ A. Our aim now will be to construct 
an interpretation * such that (/\T —* V A)* is false (in the standard model of arithmetic). 

Perform a saturation procedure to^get a saturated sequent T' =>• A' (4.4), and then make 
a completion to get a set of formulas F (4.5). 

We define the desired interpretation * on sentence letters S,-, proof variables Xj and proof 
constants aj first. As usual, rtn denote the Gödel number of t. Put 

t + l = t+l,    ifSieF „._,-„. n „*-r„n 
j + i = o,      if s^f',       j ~   j '     j -   j • 

The remaining parts of * are constructed by a multiple arithmetical fixed point equation. 
Let (PROOF, <g>, ©, -ft) be a standard nondeterministic proof predicate from Section 2, 
with <8> standing for application, © for choice and ft for proof checker operations on proofs 
associated with PROOF. For technical convenience and without loss of generality we assume 
that PROOFCt"1, k) is false for any £P-term t and any k G OJ. 

Let <p(x,y) be a provably £1 formula, i.e. ip(x,y) is provably equivalent to 3zij}(x,y,z) 
for some standard primitive recursive formula ip(x, y, z). Under ßx<p(x, y) we mean a natural 
term for a computable function f(y): 

Given y find a tuple (u, y, z) with the least number such that i>(u, y, z). Let f(y) = u. 

In what follows * is based on a normal proof predicate Prf 

m(x,y) = fizM(x,y,z),   a(x,y) = (izA(x,y,z),   c(x) = fizC\x,z), 

where Prf , M(x,y,z), A(x,y,z), C(x,z) are determined by a fixed point equation FPE 
below. Note, that rB*"' can be calculated in a primitive recursive way from 

rPrf(x,yr, rM(z,y,zr, rC(x,Zy, ^A(x,y, z)"> 
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for any subformula B from V U A'. 
By the arithmetical fixed point argument there exist arithmetical formulas Prf(x,y), 

M(x, y, z), A(x, y, z), C(x, z) such that VA proves the following fixed point equation (FPE): 

Prf(x,y)     H-     PROOF(x,y)    V 
«x = rti for some £P-term t" A y = rB*~" A "B g !(*)". 

M(x, y,z)   f*    if x = rs~l and y = rt~l for some terms s, t, then z = rsi~l , 

if x = rs~l and j/ 7^ rin for any term t, then recover I(s), 
put z = fiw(/\{PROOF{w, r£*n) I B € /(«)}) ® y, 

if y = rtn and x ^ rs~> for any term s, then recover I(t), 
put z = x®fiw(/\{PROOF(w,rB*n) I B € /(*)}), 

z = x <S) y, else. 

C(x, z)        <r>ifx = rt*~>, then z = Hf , 
z =*fra;, e/se. 

A(z, j/, 2)     f*    if x = rs~>, y = rt~l for some terms s, t, then z = rs + t~] , 

if x — rs~l and y ^ rt~i for any term t, then recover I(s), 
put z = fiw(/\{PROOF(w, rB*n) I B G /(«)}) © y, 

if y = rtn and x ^ rs~i for any term s, then recover I(t), 
putz = x©nw(/\{PROOF{w,rB*n) \ B e I(t)}), 

z = x@y, else. 

Here fiw(/\{PROOF(w,rB*~l) | B € I{t)}) is a natural computable i-term corresponding to 
the following computable procedure: 

"'Given r£~l take a code of I(t) and calculate a code of I*(t), which is a finite set 
of arithmetical translations of CP formulas from I(t). Set w equal to the least 
number which is a proof of all formulas from I*{t) in the sense of PROOF. Put 
w=0, if I(t) is empty. " 

The convergence of fj,w(/\{PROOF{w,rB*n) \ B € I(t)}) will be established in 5.7. By FPE 
it is immediate that Prf is a provably Ai-formula and if VA h rp, then Prf(k,ripn) for some 
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k £ üJ. Also by FPE, each of the formulas M, A, and C is provably Si, and thus the terms 
m(x,y), a(x,y) and c(x) are computable. 

5.2 Lemma.   VA \- t* = rtr* for any term t. 

Indeed, according to FPE 

(st)* = m(s*, t*) = m(rs^, rr) = rsr. 

The same holds for (s + t)* and It*. 

5.3 Corollary.   * is injective on formulas and terms from T' U A'. 

5.4 Corollary.   X* is provably Ai for any X occurring as a subformula in V U A'. 

Indeed, if X is atomic, then X is Ai by the definition of *. If X is t:Y, then 

(t:Y)*    =   Prf{t*,rY*n), 

and since 
VA h Prf{f, rY*n) *-> Prf(rtn, -"y*"1) 

and Prf(rtn, rY*~l) is provably Ai, then (t:Y)* surely is Ai. Since Ai is closed under boolean 
connectives for each X occurring as a subformula in T' U A', X* is provably Ai. 

5.5 Lemma.   If X e f', then VA \- X*, if X e A', then VA h ->X*. 

Proof. By induction on the length of X. Base case, i.e. X is atomic or X = t:Y. If X is 
atomic, then X* is true iff X € V by definition and since T' and A' are disjoint. If X = t:Y 
and t:Y e f'.Jhen VA h "F G /(t)" and VA h (try)* by FPK If t:y e A', then "Y € /(t)" 
is false, since V and A' are disjoint. The formula PROOF(t*, rY*~*) is also false since t* = rt~l 

and PROOF(rtn, k) is false by assumption. Thus (t:Y)* is false by FPE. The induction steps 
corresponding to boolean connectives are standard and based on the saturation properties 
of r' => A'. For example, let X = Y ->• Z and Y -»• Z € f'. Then 7 4 Z £ f, and by 
definition 4.3 Y G T' or Z G A'. By the induction hypothesis, y* is true or Z* is false, and 
thus (y —» Z)* is true, etc. 
< 

5.6 Lemma.   714 \- <p   &■    Prf(n, r<p~*) for some n gw. 
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Proof.   It remains to establish (<=). From FPE it is clear that 

Prf(n, ri>'])   =►   "PROOF (n, ripn)  or V = B*  for some B such that t:B eT'". 

In the latter case B £ V by the saturation property of T', and VA h 23* by 5.5. 

5.7 Lemma.   For any closed computable terms s,t the terms m(s,t), a(s,t), c(t) are closed 
and computable. 

Proof. It suffices to establish, that for any proof polynomial t the arithmetical term 
Hw(/\{PROOF(w,rB*n) | B G I{t)}) is closed and computable. For that it suffices to check 
that VA h 3w{/\{PROOF{w,rB*n) | B € I{t)}). Argue in VA. Given T take a code of I(t) 
and a code of I*(t), which is a finite set of arithmetical translations of £P formulas from /(£). 
By 5.5 VA proves all arithmetical formulas from I*(t), thus VA h /\{PROOF(k, rB*n) | B € 
I(i)} for some natural number k. 
4 

5.8 Lemma.   The normality conditions for Prf are fulfilled. 

Proof.   Normality checklist: 
1. Prf is provably Ai (follows from FPE). Conditions on the arithmetical terms m(x,y), 

a(x, y) and c(x) are fulfilled by FPE and 5.7. 
2. for any finite set 5 of arithmetical formulas VA h S if and only if Prf(n, S) holds for 

some natural n (follows from FPE and 5.6). 
3. for each n the set of formulas {<p \ Prf(n,r<pn)} is finite. Indeed, either n is not a 

number of an £P-term, then use the normality of PROOF. Otherwise use the finiteness of 
I(t) and the injectivity of *. 
A 

Let us finish the proof of the concluding "not 1 implies not 5" part of 5.1. Given a sequent 
r => A not provable in CPGQ we have constructed an interpretation * such that T* are all 
truej and A* are all false in the standard model of arithmetic (5.5). Therefore, (f\T —y V A)* 
is false. 
< 

5.9 Corollary.   CPQ is decidable. 
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Indeed, given an £P-formula F run the saturation algorithm SAT on a sequent =*> F. If SAT 
fails, then CP0 r- F. Otherwise, CP0 \f F. 

5.10 Corollary.     (Completeness of CP with respect to the provability semantics) 

CP(CS) hF    «        VA\- F* for any CS-interpretation *. 
&       F* is true for any CS-interpretation *. 

5.11 Corollary.   (Cut elimination in CP.)     Every sequent derivable in CPQ can be derived 
without the cut rule. 

Proof. Let CPQ \- Y =$■ A. For each use of the rule =>• c:A replace it by the axiom 
sequent c: A =$• c: A, and add c: A to the antecedents of all the sequents below the given node. 
The result will be a legitimate derivation in CPQo of the sequent CS, T =£- A for a constants 
specification CS consisting of all those c : A's. By 5.1 there exists a cut-free derivation V 
of CS, r =£• A in CPQo. Without loss of generality we may assume that every formula c: A 
from CS there has been introduced in V by an axiom c: A ^- c: A. Two other options: the 
weakening rule, or the rule (: =$>■ ) can be eliminated. The weakenings can be easily removed 
without any harm to a derivation. By induction on the cardinality of CS we show that there 
exists a cut-free derivation of CS', T => A in CPQo such that CS' C CS and no occurrence of a 
formula c: A from CS' has been introduced in this derivation by the rule (: =£• ). The base 
case corresponds to an axiom and is trivial. Every use of the rule (: =$■) 

V V'0 V 
A, r' =► A' transforms into =*> A A, V => A' 

c:A,r'=^A' r'=>A' 

The end sequent T' =$► A' of the latter derivation is one formula from CS less and, by the IH 
admits a cut-free derivation without an introduction of formulas from CS by the rule (: =^). 
Finally, in a cut-free derivation of CS, T => A in CPQo without weakenings and (: =$■) for 
formulas from CS replace each axiom c: A =>■ c: A for c: A € CS by the rule (=£■ c) introducing 
=>■ c: A. The result will be a derivation in CP of the sequent r =$■ A. 

Of course, cut elimination for CP can be also established by a direct system of reductions 
(cf. Section 8 of this paper). However, here we have got the cut elimination theorem almost 
for free, as a side product of the arithmetical completeness theorem. 

5.12 Comment. Decidability of CP follows from the results of [33]. This fact can also be 
obtained from the cut elimination property of CP (Corollary 5.11) as as exercise. 
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6    Realization of modal and intuitionistic logics 

It is easy to see that a forgetful projection of CP is correct w.r.t. «Si. Let F° be the result 
of substituting OX for all occurrences of t: X in F, and T° = {F° \ F 6 T} for any set T of 
£P-formulas. 

6.1 Lemma.   If CPY-F, then «Si h F°. 

Proof.     This is a straightforward induction on a derivation in CP. 
< 

The goal of the current section is to establish the converse, namely that CP suffices to 
realizate any «Si theorem. By an CP-realization of a modal formula F we mean an assignment 
of proof polynomials to all occurrences of the modality in F, Fr is the image of F under a 
realization r. Positive and negative occurrences of modality in a formula and a sequent are 
defined in the usual way. 

1. An indicated occurrence of □ in OF is positive. 
2. Any occurrence of D in G->F, GAF, FAG, GVF, FVG, OF and r =>• A,F has the 

same polarity as the corresponding occurrence of □ in F. 
3. Any occurrence of □ in ->F, F-*G and F, T =$> A has a polarity opposite to that of 

the corresponding occurrence of D in F. 

In a provability context OF is intuitively understood as "there exists a proof x of F". After 
a skolemization, all negative occurrences of □ produce arguments of Skolem functions, while 
positive ones give functions of those arguments. For example, DA —> OB should be read 
informally as 

3x " x is a proof of A " —> 3y   " y is a proof of B", 

with the Skolem form 

" x is a proof of A" —)• " f(x) is a proof of B". 

The following definition captures this feature. A realization r is normal if all negative occur- 
rences of D are realized by proof letters. 

6.2 Theorem.   IfSihF, then CP h Fr for some normal realization r. 

Proof. Consider a cut-free sequent formulation of «Si, with sequents r =>■ A, where T and 
A are finite sets of modal formulas. Axioms are sequents of the form S =$■ S, where S is a 
sentence letter and ± =*► . Along with the usual structural rules and rules introducing boolean 
connectives there are two proper modal rules (cf.[45]): 

23 



A,T ^ A  ,       x .     nr => A , 
(D=>)  (=>D) 

DA, T =^ A and Dr =► DA 

(D{A1,...,An} = {DA1,...,DAn}). 
If <S4 h F, then there exists a cut-free derivation T of a sequent => F. It suffices now to 

construct a normal realization r such that £P h /\ Tr —► V Ar for any sequent r =>• A in T. 
We will also speak about a sequent r => A being derivable in CP meaning CP \- /\ T -¥ V A, 
or, equivalently, T r-£p V A, or £R? h T =^ A. Note that in a cut-free derivation T the rules 
respect polarities, all occurrences of D introduced by (=> O) are positive, and all negative 
occurrences are introduced by (□ =>•) or by weakening. Occurrences of □ are related if they 
occur in related formulas of premises and conclusions of rules; we extend this relationship by 
transitivity. All positive occurrences of D in T are naturally split into disjoint families of 
related ones. We call a family essential if it contains at least one case of the (=$■ O) rule. 

Now the desired r will be constructed by steps 1-3 described below. We reserve a large 
enough set of proof variables as provisional variables. 

Step 1. For every negative family and non essential positive family we replace all occur- 
rences of ü by x: for a fresh proof variable x. 

Step 2. Pick an essential family /, enumerate all the occurrences of rules (=>■ □), which 
introduce boxes of this family. Let n/ be the total number of such rules for the family /. 
Replace all boxes of the family / by the term 

(ui + ... + vn/), 

where u,'s are fresh provisional variables.  The resulting tree 7o is labelled by CP formulas, 
since all occurrences of the kind OX in T are replaced by t: X for the corresponding t. 

Step 3. Replace the provisional variables by proof polynomials as follows. Proceed from 
the leaves of the tree to its root. By induction on the depth of a node in 7o we establish 
that after the process passes a node, a sequent assigned to this node becomes derivable in 
CP. The axioms S => S and _L =*> are derivable in CP. For every rule other than (=*• ü) we 
do not change the realization of formulas, and just establish that the concluding sequent is 
provable in CP given that the premises are. Moreover, every move down in the tree 73 other 
than (=$• ü) is a rule of the system CPy, therefore, the induction steps corresponding to these 
moves follow easily from the equivalence of CP and CPy. 

Let an occurrence of the rule (=$• □) have number i in the numbering of all rules (=> O) 
from a given family /. This rule already has a form 

yl:Y1,...,yk:Yk =» Y 

yi:Yi,...,yk:Yk => (t*i + ■ • . + unf):Y , 
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where j/i,..., j/fc are proof variables, u\,..., unf are proof polynomials, and U{ is a provisional 
variable. By the induction hypothesis, the premise sequent j/i: Yi,..., yk:Yk =>• Y is derivable 
in CP, which yields a derivation of 

yl:Y1,...,yk:Yk => Y. 

By Lifting (Lemma 1.2), construct a proof polynomial t(yi,..., yn) such that 

yi'Yi,...,yk'Yk =$> t(yi,...,yn):Y 

is derivable in CP. Since 

CP h t:Y -¥ («i + ... + tt,-_i + t + iii+i + ... + unf):Y 

we have 

£P\-yi:Yi,...,yk:Yk =$■ («i + ... + «t-i + * + «i+i + • • • + unf) :Y. 

Now substitute t(j/i,..., yn) for u,- everywhere in the tree 70- Note, that t(r/i,..., yn) has no 
provisional variables, there is one provisional variable (namely «,•) less in the entire 7o- All 
sequents derivable in CP remain so, the conclusion of the given rule (=> D) became derivable, 
and the induction step is complete. 

Eventually, we substitute terms of non-provisional variables for all provisional variables in 
7o and establish that the corresponding root sequent of 7o is derivable in CP. Note that the 
realization of ü's built by this procedure is normal. 

6.3 Corollary. (Arithmetical completeness of <S1.) <S4 (- F iff there is a realization r and 
a constant specification CS such that Fr is CS-valid. 

6.4 Comment. It follows from 6.1 and 6.2 that «Si is nothing but a lazy version of CP when 
we don't keep track on the proof polynomials assigned to the occurrences of G. Each theorem 
of «Si admits a decoding via CP as a, statement about specific proofs. The language of CP is 
more rich than the one of «Si. In particular, «Si theorems admit essentially different realizations 
in CP. For example, consider two theorems of CP having the same modal projection: x:FVy: 
F —t (x + y) : F and x : FVx : F —t x : F. The former of these formulas is a meaningful 
specification of the operation "+". In a contrast, the latter one is a trivial tautology. So, CP 
is the right logic of provability, and «Si should be considered as a lazy higher order language on 
top of CP. A general recipe for using «Si as a provability logic might be the following: derive 
in «Si or reason about «Si using a conventional modal logic technique as before, translate the 
results into CP to recover their true provability meaning. 
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Let T(F) denote a translation of an intuitionistic formula F into the plain modal language 
which puts the prefix □ in front of all atoms and implications in F. It is well-known that 
lnt\-F iff <S4hT(F) ([12]). 

6.5 Corollary.   (Realization of intuitionistic logic) For any Xnt-formula F 

Xnt \- F   O   CPY- (T(F))r for some realization r. 

6.6 Comment. One cannot realize even a formula from 1.4 without "+". Moreover, the 
"+"free fragment of CP cannot realize modal modus ponens: there are modal formulas A 
and A -> B both realizable without "+" such that B is not realizable without "+". The 
"+"free fragment of CP is not complete with respect to the class of all deterministic proof 
predicates. In order to make it complete one has to add a functionality principle from [3]. 
The completeness of the resulting system TCP with respect to deterministic proof systems was 
established by V. Krupski in ([23]). TCP does not have a modal counterpart. For example, 
TCP derives a principle ->(x: A A x: (A —>■ A)), which is false in any normal modal logic. One 
of the surprises of the logic of proofs is that 

provability as a modal operator corresponds to non-deterministic proofs. 

It is easy to see that the "+"free fragment of CP cannot realize the intuitionistic formula 
(aV6) —> (-io —>&), if we use the translation T from [12]. However, this formula becomes 
realizable if we use the original Gödel translation from [16], defined by the clauses g(P —»■ 
Q) = Og(P) -> Og(Q) and g{P V Q) = dg(P) V Og(Q). 

6.7 Corollary. (Arithmetical completeness of Int.) Xnt h F iff there is a realization r 
and constant specification CS such that T(F)r CS-valid. 

Kolmogorov's interpretation of intuitionistic logic Xnt as a "calculus of problems" ([20]) can be 
made explicit via CP. Let F be a formula in the language of Xnt. Consider the translation k(F) 
of F into the language of Si along the lines of the (informal) definitions in ([20]): k(P) = OP 
for a sentence letter P, k(±) = 1, k(A^B) = D[k(A)-+k(B)], k(AAB) = n[k(A)Ak(B)]t 

k(AVB) = G[fc(A)Vfc(B)]. It is easy to verify that 

Xnt\-F      &      Si±-k(F). 

6.8 Definition.      Let F be a formula in the intuitionistic propositional language. A Kol- 
mogorov realization K(F) of F is an /IP-formula [fc(iJ,)]r, where r is a realization of modalities 

26 



in k(F) by proof polynomials. A formula F is Kolmogorov realizable if it has a Kolmogorov 
realization K{F) provable in CP. Under a realization K propositional atoms in F become 
atomic problems, namely statements of the sort t:S meaning ut is a proof of £". Intuitionistic 
connectives are given precise meaning according to [20]. 

6.9 Theorem.     (Completeness of Xnt with respect to the Kolmogorov realization) 

Xnt \- F       <=>■       F is Kolmogorov realizable. 

Proof. Either Xnt r- F, then Si h k(F) and, by theorem 6.2, there exists a proof realization r 
such that CP \- [k{F)]r. Put K(F) = [k(F)]r. Or <S4 \f k(F) and, by lemma 6.1, CP \f [k(F)]r 

for any realization r. 
4 

6.10 Comment. By theorem 6.9, the logic of proofs CP provides a provability semantics 
for the Kolmogorov "calculus of problems". A conjecture, that the "calculus of problems" 
coincides with Xnt was made by Kolmogorov in [20]. Note that such readability models of 
Xnt as Kleene readability ([19]) and Medvedev logic of problems ([29]) provide only necessary 
conditions for Xnt (cf.[12]). Each of them along with Xnt realize some formulas which are not 
derivable in Xnt. 

7    Intuitionistic Logic of Proofs 

The Intuitionistic logic of proofs CPi is defined as a system 1.1 with A0 being a list of axiom 
scheme for the propositional intuitionistic logic. CPi is correct with respect to the natural 
provability interpretation as a calculus of proofs for either VA or the intuitionistic arithmetic 
HA. We do not address the issue of arithmetical completeness of CPi in this paper. 

The Gentzen style system CPQi for the intuitionistic logic of proofs can be defined as 
follows (cf. the system G2i from [45]). Sequents in CPQi are all of the form T =$> F, where T 
is a multiset of £P-formulas, and F is an £P-formula. 

Axioms of CPQi are sequents of the form P,T =$> P, where P is either a sentence letter or a 
formula of the sort t: F, and sequents of the form _L, T => F. 

Rules of CPQi are 

——■ (LA)  (ÄA) 
AAB,T^C T=>AAB 
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T => AQVAI    (i = 0,l) 

r => A     A, r' =» B ,„ , 
— (Cut) 

AVB,r=^C 

r=^A     B,r=*c 

A->B,r =*c 

W=>c 
A,r=^c 

A'r^S (/•) 
i:A,T => B 

r *'="(»+) 

r,r'=* B 

r =► t:A 

r=^ !i:i:A 

T=> t:A 

(B!) 

(Rr+) 
T =$> A,(t + s):A T => A,(s + t):A 

T^s:(A^B)      T=>t:A   {R) T^A    (Bc), 

r=^(s-i):B r=^c:A 

where A is an axiom A0 - A^ of the Hilbert style system for EPi (definition 1.1.), c is a proof 
constant and V is the standard derivation ofT=>A. Under the standard derivation here we 
mean the following. If A is AO (i.e. a propositional axiom), then V is the straightforward 
cut-free derivation of T =$■ A in the Gentzen style system for Int. For axioms Al - A4 the 
standard derivations are 

V 
F,T =► F 

t:F,T^ F 

T =» t:F^F 

where V is the straightforward cut-free derivation of F, T =$> F in the Gentzen style system 
for Int. 

s:(F -+ G),t:F,T =* s:{F -* G)      s:(F -> G),i:F,r =» t:F 

s:(F4G),(:F,r^ (s-t):G 

r =► s: (F ->• G) -> (t:F-4(s • t) :G) 

t:F,T=>t:F t:F,T=>t:F 

t:F,T ^  \t:t:F t:F,T ^ {t +s):F 

t:F-*\t:t:F V =► t:F-+(t + s):F 
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Under CPQi~ we mean a cut-free fragment of CPQi. 

7.1 Theorem.   Cut elimination holds for CPi. 

Proof.   We shall deliver a syntactical proof that CPQi f- T => A yields CPQi~ (- T =>• A. 

7.2 Definition. A level of a cut is the sum of the depths of the deductions of the premises. 
The rank rk(A,V) of a given occurrence of A in a derivation V is defined by the following 
induction on the depth of this occurrence in V. For a term or a formula X by \X\ we denote 
the total number of occurrences of propositional, proof variables and constants, propositional 
and functional symbols in X. If X G {P, _L, T} in a derivation V consisting of an axiom 
P, T =► P or J_, r =► F, then rk{X, V) = \X\. 

For all the rules of CPQi ranks of the corresponding occurrences of the side formulas 
coincide. For the rule (LA) 

rk(AAB,V)  = rk(A,V) + rk(B,V) + 1. 

Similarly for the rule (RA), (LV) and (R-t). 

For (RV), case j = 0, 
rk(AoVAi,V)  =  rk{A0,V) + \At\ + 1, 

similarly for j = 1. 

For (L ->) 
rAf(A-^B,2?)  = rJfc(A,P) + rJfc(B,2>) + l. 

For (L :) 
r*(t:A,2))  = rk(A, V) + \t\. 

For (R\) 
rk(\t:t:A,V)  = rk(t:A,V) + \lt\. 

For {Rl+) 
rk((t + s):A,V)  = rk(t:A,V)+ \s\ + l. 

For (Rr+) 
rk((t + s):A,V)  = rk(s:A,V) + \t\ + l. 

For '(R-) 
rk{{s-t):B,V)  = rk(s:(A->B),V) + rk(t:A,V) + \{s -t):B\. 

For (Re) 
rk(c:A,V) = rk{A,V) + |1|. 

Note that rk(A,V = |A|. 
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For (LC) the rank of the occurrence of A in the conclusion of the rule is the maximum rank 
of the indicated occurrences of A in the premise sequent. The rank of the cut rule 

T=>A       A,r'=► B   ,„   s 
— {Cut) 

r,r'=>ß 

is the maximum rank of the indicated occurrences of A in the premise sequents. The outrank 
of the deduction V is the maximum of the ranks of the cuts occurring in V. 

From the definitions it follows easily that 
1. \A\ < rk{A,V) and rk(A,V) = \A\ if V does not use the rule (R-). 
2. rk(A,V) monotonically increases for the related occurrences of A with the increase of 

depth. 

7.3 Lemma. (Rank- and depth-preserving invertibility of the rule (R-f)). IfV is a deriva- 
tion ofT =>• A—vB, then there is a derivation V of A,T =$> B such that 

1. the depth ofV is not greater, then the depth ofV, 
2. the outrank ofV equals to the outrank ofV, 
3. rk(FV')  =  rk(F,V) for all formulas from T, 
4. rk{A,V') + rk{B,V') + l  =  rk(A^B,V). 

Proof. An induction on the depth of V. The base case corresponds to an axiom. Since 
A—*B is neither atomic nor of the form t:F the case when A—»£ is a principal formula of an 
axiom is impossible. If V is an axiom _L, A => A-+B, then put V to be i., A, A =^ B. For 
the induction step consider two possibilities. If A —> B is the side formula of the last rule in 
V, then replace A =$> A-tB in the premise(s) of the last rule by A, A =>■ B, by IH. If A->B 
is the principal formula of the last rule in V, then the deduction ends with 

2>i 
A,T=>B 

r=^ A-+B . 

In this case put V' to be V\. 
< 

7.4 Lemma,   (m-reduction) Let V be a cut-free derivation ofT =S* t: A.   Then there is a 
derivation VofT=$-A such that 

1. the outrank ofV is less then the rank of the indicated occurrence oft:A in V, 
2. rk(F,V)  =  rk(F,V) for all formulas from F of the end sequent, 
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3. rk(A,V) < rk(t:A,V) for A and t:A being the antecedents of the end sequents ofV 
and V respectively. 

Proof. Induction on the depth of V. If V is an axiom t: F, A =>■ t: F, then let V be the 
derivation 

F,T^F    (L:) 

t:F,T=>F , 

where V\ is a standard cut-free derivation of F, T =$- F. Note, that such a derivation does not 
use the rule {R-), therefore rk(X,V) = \X\ = rk(X, V) for all formulas from T. Similarly, 
rk{F,V') = \F\<rk{t:F,V). 

The induction step. The case when t: A is a side formula of the last rule in V is trivial. 
Let t:A be the principal formula of the last rule (R\) in V, then the deduction ends with 

r =>t:A 
T =► \t:t:A . 

In this case V\ is a cut-free derivations sutisfying also the requirements 2.   and 3.   of the 
lemma. 

If the last rule in V is (Rl+), then the deduction ends with 

Vx 

T =>t:A 
T => {t + s):A . 

By the IH, there exists a derivation T>[ of T =$■ A satisfying the lemma's conditions for the 
derivation T>\. Put V to be V'x. The case (Rr+) can be treated similarly. 

If the last rule in V is (R-), then the deduction ends with 

T=>s:(A-+B)   T=>t:A 

By the IH, there exist derivations V[ of T =$■ A —t B and T>'2 of T =$> A satisfying the lemma's 
conditions. Take the derivation V'[ of A, T =$> B from the inversion lemma 7.3 and combine 
the new derivation V3 

V2 V{ 
r => A A, r =j> B 

r,r^B       . 
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Using the contraction (LC) we get the desired derivation V of T => B.  It is easy to check 
that all the requirements of the lemma are met. 

If the last rule in P is (R-), then V is 

Pi 
r=^ A   . 

r =>c:A 

Let P' be Pi. 
<« 

Now we return to the proof of theorem 7.1. Our strategy will consist of eliminating the 
uppermost cuts. In order to save expositions of some well known constructions we will refer 
to the corresponding steps of the proof of the cut elimination theorem 4.1.2 from [45] when 
convenient. 

7.5 Lemma.     Let V be a derivation ending in a cut 

VX P2 

r =► A A,V =» B 

r, r =» B 

such that P contains no other cuts. Then we can transform P into a derivation V of the same 
sequent T,T' =$> B such that cutrank(V')<cutrank{V) — max {rfc(A, T>x),rk(A, P2)} without 
an increase of the ranks of the formulas from F, T', B. 

Proof. An induction on the rank of the cut rule, with a subinduction on its level. There 
are then three possibilities: 

1. at least one of Pi, V2 is an axiom P, T =$■ P or _L, T => F; 
2. not 1. and the cutformula is not principal in at least one of the premises; 
3. not 1. and the cutformula is principal on both sides. 

Case 1. Cut can be eliminated at all by the standard reductions ([45]). 

Case 2. We permute the cut upward in a stantard way (cf.[45]) without changing its rank as 
well as the ranks of all formulas in the end sequent of the derivation, until we find ourselves 
in situations number 1 or number 3. 

Case 3. The cutformula is principal in both premises and neither of the premises an axiom. 
The induction hypothesis is that the claim of lemma has been shown for all cuts of rank less 
than rk(A, V) and of rank equal rk(A,V), but level less than the one of the given cut. The 
rules corresponding to propositional connectives are treated in a usual way (cf.[45]). There is 
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one additional concern here compared to [45]: we have to make sure that our reductions do 
not increase the ranks of the side formulas from T, T'. For example, let us consider the case 
(R —)•). The original deduction is 

VQ VX V2 

T,A^> B r' =*• A   r',B => C 

This is transformed into 

r,r'=>c 

r' =► A r, A =► B v2 

r',r=» £ r',ff =>c 
r',r',r, =*c 

We have eliminated the old cut but have got two new cuts instead, both having lower ranks. 
After a number of contractions in the end sequent we get the desired derivation. 

The new cases emerge when the cutformula is of the form t: F. In all those cases the right 
premise is just introduced by (L:). So, we distinguish the cases by their left premises. 

Case (R\). The derivation is 

r =► t:A t:A,T' =» C 

T=>lUt:A H:t:A,r=>C 

r,r'^c 
This is transformed into a derivation with a lower ranked cut 

Vx V2 

T^t:A t:A,V=>C    , 

Case (Re) is treated is a similar way. 

Case (Rl+) (and (Rr+) by a similar argument). The derivation 

Vi V2 

T=>t:A A,T'^C 

(t + s):A (t + s):A,T^C 

rtv=>c 
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should be transformed into one with a lower outrank 

2>! A, r' =► c 

Case (R-): 

X>0 #1 ^2 

r=»s:(A->ß) T=»i:A B,T' => C 

T=>(s-t):B (s-t):B,T' =>C 

r, r' =► c 

We transform it into a derivation with a lower outrank as follows. By m-reduction (lemma 
7.4) without a rank increase we get derivations 

r => A^B r ^ A 

From V'Q by 7.3 without the rank increase of the side formulas we get a derivation 

75" 

Y,A^B 

where 

rk{A,V%), rk(B,V%) < rk(A^B,V0) < rk{s:{A-+B),V0) < rk{(s-t):B,V). 

The transformed derivation in this case will be 

r=^ A   A,T =► B 
T,T^B 

v2 
B,V =>C 

r,r,r' =>c 

Again, use some contractions in the end sequent to get the desired derivation.   We have 
eliminated the old cut and have created two new ones and, may be, some more in V'x and VQ 

as a result of the m-reduction. By 7.3 and 7.4 all new cuts have lower rank. 
This ends the proof of lemma 7.5. 
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7.6 Lemma. Let a derivation V contains not more than one use of the cut rule. Then by a 
finite chain of reductions it can be transformed into a cut-free derivation V of the same end 
sequent without changing the ranks of the formulas from the end sequent. 

Proof. An induction on the n =cutrank(V). The base case n = 0. Then V is already cut- 
free. The induction step. Assume n > 0, thus, V contains a cut. Without loss of generality 
assume that the cute rule is the last rule in V. By Lemma 7.5 transform V into V\ with 
cutrank(Vi) <cutrank(V). Beginning with the uppermost cuts in V\ eliminate them all by 
the IH. 
< 

To conclude the proof of Theorem 7.1 use Lemma 7.6 to eliminate every cut in a given 
derivation beginning with the uppermost ones. 
< 

8    Natural deduction system and A-terms for Logic of Proofs 

8.1 Definition. The natural deduction system CPN for £P is obtained from a usual natural 
deduction system for propositional logic (cf. [13], [45]) in the language of CP extended by the 
following rules 

s:iA->B)      f.A UA_ UA_ 

{s-t):B A H:t:A 

V 
t:A   (+/) — (+7) A     (d) 

(t + s):A (s + t):A c:A 

where A is an axiom of the Hilbert version of CP (Section 1), c is a proof constant, and V 
is the standard derivation of A. Under the standard derivation of A we mean the following. 
If A is an axiom A0, then V is the straightforward normal derivation of A in the natural 
deduction system for Int. For other axioms Al - A4 the standard derivations are 

[s:(A^B)]      [f.A] 

[t:A] (s-t):B 

t:A-*(s-t):B 

UA-+A s:(A^B)^{t:A^(s-t):B) 
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M] [t:A] 

\t:t:A (t+s):A 

t:A->\t:t:A t:A->(t+s):A 

Note that a standard derivation has no undischarged premises. Under CPN h T =>■ A we 
mean "^4 is derivable in CPN from assumptions T". 

A standard theorem relating Hubert, Gentzen and natural style derivations in CP holds. 
Namely the following are equivalent 

l.ThßpA 
2. CPQ \- r => A 
3. CPN hr^A 

This fact is established by the standard mutual simulations of derivations in all three systems 
(cf. section 3.3 in [45]). In fact for any source derivation of size s the simulation runs in 
polynomial time and produces a derivation of size O (s). 

The following analog of the Lifting lemma 1.2 holds for CPN. 

8.2 Corollary. If\- s :T, A =S> A, then for any proof variables y one can construct a proof 
polynomial t(x,y) such that CPN h s : T,y : A =*> t(s,y) : A. Moreover, if T = 0 then the 
derivation ofy:A =>■ t{y):A contains no rules other than (-1), (cl) or (c2I). 

Proof. Induction of the depth of a derivation. A straightforwrd natural deduction version of 
Lemma 1.2. The number of steps in the algorithm constructing V' is bounded by a polynomial 
of the length of V. 

8.3 Definition. Contractions for CPN include all usual contractions for propositional logic 
(A—, V—,-±-contractions, permutation contractions) (cf. section 6.1.3 in [45]), and the new 
contractions 

contraction 

s:(A-*B)   t:B 

transforms into 

s:{A-±B) 

A^B 

v2 
t:A 

{s-t):B A 

B B 
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+-contraction 

V 
t:A 

(t + s):A 
transforms into 

V 
t:A 

'.-contraction 

V 
t:A 

\t:t:A 

t:A 
transforms into 

V 
t:A, 

c-contraction 

V 
A 

c:A 
transforms into 

V 
A. 

An obvious new permutational contraction should also be added that allow "pulling" the (: E) 
upwards through the iyE) rule. An £PA/"-derivation V is normal if no contraction is possible 
anywhere in V. 

8.4 Theorem.   Normalization holds for CPAf 

Proof. Given a derivation V in CPAf of the type T =$> A one can construct a normal 
derivation V of the same type T => A. Indeed, for a given derivation of T =$► A in CPAf 
one can construct an /^-derivation of a sequent r =£> A. By 5.11, there exists a cut-free 
/^-derivation of T =3> A. A usual transformation of a cut-free /^-derivation into an £PAf- 
derivation produces a normal /TW-derivation (cf. section 6.3 in [45]). Since both of the 
transitions from CPN derivations and back are computable (and feasible), the entire efficiency 
of the process of proof normalization in CPN in this proof is determined by an efficiency of 
normalization of proofs in CPQ. An easy adaptation of a constructive normalization theorem 
for CRAfi independently establishes a direct algorithm of normalizing derivations in CPAf as 
well. 

37 



We leave the description of a direct realization algorithm for the normal deduction system 
for Si in CPM based on 6.2 as a useful exercise. 

8.5 Definition.     Under CPMi we mean an intuitionistic version of of CPM which is obtained 
from CPM by omitting the double negation rule 

[-IA] 

V 
1 

8.6 Theorem.     (From Gentzen to normal deductions in the intuitionistic CP) 

CPQi \~ r => A      if and only if     CPMi h T =► A. 

Moreover, a cut-free derivation in CPQi transforms into a normal derivation in CPMi. 

Proof.     A usual argument in the style of Section 6.3 from [45]. 

8.7 Corollary.   Normalization holds for CPMi 

Proof. Take a derivation of the sort r =>■ A in CPM, transform it into a derivation of 
r => A in CPQi, perform a cut elimination, and transform the resulting cut-free proof back 
into an CPMi derivation. By Theorem 8.6, the resulting derivation is normal. As an exercise 
one could write down a direct algorithm of normalization of derivations in CPMi that will 
essentially repeat the reduction steps for cut elimination in CPyi. Moreover, on the basis 
of the reductions from the proof of Theorem 7.1 one could establish a strong normalization 
property of CPQi and CPMi. 
<« 

Extending the term calculus for the intuitionistic logic ([45]) we can identify the full CPMi 
with a system of typed A-terms in a natural way. 

8.8 Definition. We define a A-term calculus CPMiX for the full CPMi. The language of 
CPMiX has only formulas of the type t:F where F is an £P-formula, and t is a term built from 
the proof variables and proof constants by atomic operations p, pj, kj, E^v, E^, App, P, 
U, B, Sj, C, (j=0,l), and A-abstraction. The arities of the operations will be made clear in 
the rules. The first eight clauses of come directly from the term calculus for Int ([45], 2.2.2). 
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We will omit an obvious description of free and bounded variables. As usual, [A] denotes a 
discharged premise A. In the derivations denoted in this definition by 

[w.F] 

p:G 

the variable w occurs free neither in F, G nor in any undischarged premise of the derivation. 

y.F 

t:.± 

EJ[(t):A 
(LEt) 

s:A     t:B 

p(s,t):(AAB) 
(Alt) 

t:(A0AAi) ,   , 
1 ■i6{0,l},(A^) 

Pj(*Mj 

UAi 

kj(t):(AoVAi) 
■ie{o,i},(v/t) 

[u:A]    [v:B] 

t:(AVB)     s:C     s':C 

Elv(t,s,s'):C 

(VEt) 

[u:A] 

t:B 
(-►It) 

\u.t:(A-±B) 

s:(A-*B) t:A 

App(s, t): B 
ir+m 

q:s:(A->B)      r:t:A 

P(q,r):(s-t):B 
(■It) 

q:t:A 

XJ(q):A 
(■■Et) 

q:t:A 

B(q):\t:t:A 
(\tl) 

q-.tj-.A 

Sj-faJifo + iiM 
je {0,1}, (+/) 
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Note that the list of rules above suffices to build a A-term p without free variables which 
internalize in CPNiX the standard £PA/Ü-derivation of an axiom A. In particular, CPNiX h p: 
A. For example, the A-term version of the standard derivation of axiom A3 is 

v:t:F 

The last rule of CPNiX is 

B(v) Xf.t-.F 

Xv.B{v):(t:F->\t:t: F) 

V 
p:A    (dt), 

C(p):c:A 

where V is the A-term version of the standard derivation of A in CPNi. 

8.9 Definition.     In the term notation the contractions for the CPNiX are 

1. Pi(p(t0,ti))     cont   tj   (j<E {0,1}) , 

2. E^ikjt^h)     cont   tj[x/t], 

3. App(Xx.t, s)     cont   t[x/s], 

4. U(B(t))     cont   t, 

5. U(C(t))     cont   t, 

6. U(P(t0,*i))     cont   App(V(to),U(ti)), 

7. U(Sj{t))     cont   U(i), 

8- flExowikjtMi)]     cont   E^QtXl(kjt,f[t0],f[ti]), where /is another eliminating oper- 
ator (i.e. one of p^-, App, U). 

The contractions 1-5 are the called detour contractions, 6-8 are permutation contractions. 
A A-term t is normal if no contractions are possible in t. 

It follows from the definitions that 

CPNi h T => A       itf"     £PJViA h x:T =J> t(f):A   /or some CPNiX-term t. 

8.10 Theorem.     (Normalization of £PJViA-terms) Every X-term for CPAfiX is normalizing. 
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Proof. Translate the proof of theorem 8.4 from the language of derivations into the language 
of A-terms. In fact one can establish a strong normalization of £PA/?A-terms with respect to 
the contractions 8.9. 

9    Abstraction in Logic of Proofs 

In this section we show that CP provides a standard provability semantics for the operator of 
A-abstraction. This matches our earlier observation (Section 6), that <Si-modality is realized 
by proof polynomials. Thus modality and A-terms are objects of the same sort, namely, they 
are all proof polynomials. Through a realization in CP both modality and modal lambda 
terms receive a uniform provability semantics. 

The defined abstraction operator \*x on proof polynomials below is a natural extension 
of the defined A-abstraction operator \*x in combinatory logic (cf. [45]). 

9.1 Definition. An £PA/i-derivation V is pure if it uses no rules other than (•/), (cl), and 
a closed version of (!7) where the principal proof polynomial t contains no variables. It is 
clear that every pure derivation is normal since it has no elimination rules. 

9.2 Lemma.     (Definable abstraction) Let V be a pure CPAfi-derivation of a type 

f:T,x:A=> t(x):B 

such that x does not occur in p:T, A, B. Then one may construct a proof polynomial X*x.t(x) 
and a pure CPAfi-derivation V of the type 

p:T =► \*x.t(x):(A->B). 

Proof.     The base case is the depth of V equals one. There are two possibilities. 

1. V is t(x):B and t(x) contains an occurrence of x. Then t(x):B = x:A. Indeed, by the 
definition of a natural derivation of the depth 1, the formula t(x): B should occur in p: T, x: A. 
Since x does not occur in p:T,A,B the only remaining possibility is when t(x) :B coincides 
with x :A. Let V be the pure derivation (without undischarged premises) of (a • b • c): (A—> A) 
where a, b, c are proof constants specified by the conditions (cf. [45], section 1.3.6.) 

a:([A->{{A->A)->A)]-¥[(A->(A->A))->(A->A)]) 
b:[A-¥((A-*A)-*A)] 
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c:[A^(A-+A)]. 

Let X*x.x = (a • b • c). 
2. V is t:B and £ does not contain an occurrence of x. Then t:B € p:T. Let X>' be 

A^B 

b:(B^(A^B)) f.B _ 

(b-t)-.(A^B) 

Let A*z.i = 6 • t. 
The induction step corresponding to the closed (!/) rule is treated similarly to the case 2. 

Consider the case (•/). Let a derivation V from the premises p:T, x: A end with 

a:{Y-*B)        t:Y 

(s-t):B * 

By the IH, we have already built pure derivations from the premises p:T of \*x.s: (A—)■ (Y-+ 
B)) and X*x.t:(A—¥Y). From them we construct a pure derivation V 

(A -»(Y -+ B)) -> ((A -)• Y) -> (A -+ B)) 

c:{{A->{Y^B))-*({A^Y)^(A-^B)))     \*x.s:(A->{Y^B)) 

(c-\*x.s):{{A^Y)->(A^B)) \*x.t:{A-+Y) 

(c-\*x.s-\*x.t):(A-+B) 

where V\ is the standard derivation of a propositional axiom. Let X*x.(s-t) = (c-X*x.s-X*x.t). 
<4 

9.3 Comment. In £PNi A-abstraction is presented by a set of proof polynomials depending 
on a context (e.g. an >C?Wi-derivation). In this respect the realization from 9.2 of A-abstraction 
by proof polynomials is similar the realization of «St-modality which is decomposed in 6.2 into 
a set of proof polynomials depending on a context (there an <S4-derivation). 

The operation A* suffices to emulate the traditional A-abstraction. In fact it cannot be 
easily extended from the pure to more general derivations without sacrificing some desired 
properties. We need to keep the format p: T, x : A =$■ t(x): B throughout all the derivation 
V in order to preserve an inductive character of the definition. The restriction "x does not 
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occur in p: T, A, B" is needed to guarantee the correctness of ^-conversion for A*-abstraction 
(below), though it rules out (!/). Note, that the rule (!J) does not admit abstraction anyway. 
Indeed, in CPN we have 

x:A =£• \x:x:A, 

but for no proof polynomial p 
=*► p:(A->x:A) 

since A-+x:A is not provable in CP. 

9.4 Definition.     The dual operation to A-abstraction is ß-conversion 

{XxA.tB)sA    —>ß   tB[xA/sA). 

/3-conversion is naturally presented as the following transformation of pure derivations in 
CPNi: 

[x:A] 
V 

t{x):B V transforms into s:A 

X*xt(x):(A-*B) s:A • 

(X*xt(x) •s):B t(s):£ 

The rule of n-conversion 

(\xA.tB)sA    - ->„    t if x is not free in t 

is treated in the same way. Finally, a-conversion corresponds to an obviously valid rule of 
renaming bounded variables in /TWz-derivations with abstraction. 

All other standard A-term constructors for Xnt can also be realized as operations on proof 
polynomials. This is a straightforward corollary of the fact that Xnt is a fragment of CPNi 
and of the Lifting rule for £RAfi. Indeed, if CPNi h T =$> B, then by induction on the given 
proof one can construct a proof polynomial p(y) such that CPN hyT => p{y) :B. However, 
for the sake of clear presentation of A-terms as proof polynomials we will explicitly build the 
proof polynomials corresponding to standard A-terms constructors. 

9.5 Definition.     We define a list of standard translations of term constructors from CRSfiX 
to corresponding derivations in CPNi. 

X-term constructor corresponding derivation in CPNi 
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y.F y.F 

V 
s:A     t:B c:(A -> (J3 -» A AB)) s:A 

p{s,t):{AAB) (c-s):{B-*AAB)     t:B 

(c-s-t)-.(AAB) 

t: Mo A Ai) f     , ^ 
je{0,l} c:(A0AA1->Aj)       t:\AoAAi) 

PjW:Ai (^Ö7Ä~ 

t:A,- T> 
— ie{0,l}                 c^Aj-^-AoVAi)       i:A; 

^•(O^AoVAx) (c.O:(A0VA!)  

[tt:A]    [v:5] 2>i V2 

(c-A*«.s):((B-»-C)->(AVB->C))    £3 

£:(AVB)     s:C     s':C (c-A*n.s-AW):(AVB-»C) t:(AVg) 

£«,* (t,8,J):C (c-\*u.s-\*v.s'-t):C 

where V\ is 

P 
c:((A->C)->((B-»C)-)-(AVB->C))) 

X>2 and 2?3 are 
[u:A] [v.B] 

s:C s':C 

X*u.s :(A^C) \*v.s': (B -> C) 
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[u:A] 

t:B 

Xu.t:{A^B) 

[u:A] 

t:B 

\*u.t:(A^B) 

s:(A-^B) t:A 

App(s, t): B 

s:(A-+B) t:A 

(s-t):B 

t:± 

EJtfy.A 

V 
c:(J_->A) t:L 

{s-t):A 

u:s:(A->B)    v:t:A 

P{u,v):(s-t):B 

V 
c:{s:(A-+B)-+{t:A^{s-t):B)) u:s:(A^B) 

(c-u):(t:A-t(s-t):B) v:t:A 

(c-u-v):(s-t):B 

v:t:A 

V(v):A 

V 
c:(t:A-+A) v:t:A 

(c-v):A 

v:t:A 

B(v):\t:t:A 

V 
c:(t:A^H:t:A) v:t:A 

(c-v):\t:t:A 

v.tj-.A 

S»:(i0 + *i):A 
■ie{o,i} 

v 
c:{tj:A^(to + ti):Ä) v.tj-.A 

{c-v):{t0 + t1):A 
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V 

c:A 

d:(c:A->-(A-»c:A)) !c:c:A 

p:A    (dt)  (d-!c):(A-»c:A) *:A 

C(p):c:A (d-!c-t):A 

In each case V denotes a corresponding standard £P.A/z-derivation with the end rule (cl). 

9.6 Theorem. (Realization of CPMiX into CPMi) Under standard translations from 9.5 an 
CPMiX-derivation x:T =£• t(x) :A becomes a pure derivation x:Tr =$► tr(x):Ar in the CPMi. 

Proof. A straightforward induction on an Z?Wi'A-derivation x : T =£• t(x) : A. It is imme- 
diate from definition 9.5 and lemma 9.2 that each standard transformation returns a pure 
derivation. 
4 

9.7 Corollary. (Realization of A-calculus for Xnt into CPMi) Let V be a X-term derivation of 
the type x:T =>• t(x):A in the term calculus for Xnt. Standard translations define an effective 
step by step realization "r" ofV as a derivation V of x:T => tr(x):A in the CPMi. 

9.8 Comment. As it is easy to see that CPMiX (as well as A-calculus for Xnt) can be realized 
in a small fragment of CPMi consisting of pure derivations only. 

We already have enough ingredients to demonstrate that the Logic of Proofs can emulate 
not only classical modal logic, but also modal A-calculi. 

Under IS4Q we mean the intuitionistic modal logic on the basis of <S4, introduced in [7] (cf. 
also [26], [38]). An inspection of the proof of theorem 6.2 (realization of modal logic), shows 
that this theorem holds also for CPi instead of CP and IS4Q instead of «Si. In other words, 
the intuitionistic logic of proofs is an explicit version of IS4a in the same sense that CP is 
an explicit version of <S4. We will show how CPQi naturally emulates the modal A-calculus for 
IS4o and thus supplies modal A-terms with standard provability semantics. 

9.9 Theorem. (Realization of modal A-calculus). There is an effective step by step realiza- 
tion "r" of any derivation x:T =>■ t(x) :A in the X-term calculus for IS4a as a derivation of 
x:Tr =► tr{x):Ar in CPMi. 
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Proof. As above all the usual steps of A-terms formation can be emulated in the Logic of 
Proofs (here in CPNi). The entire term assignment system for IS4Q is obtained from the usual 
one for intuitionistic logic by adding two new rules that correspond to "modal" operations on 
A-terms "box" and "unbox": 

A^> si-.UAi ... A=> sk:DAk  xi:UAi,...,xk:UAk =» t{x):B 

and 

A =>box(t(s)):OB 

T ^t:OA 

T =>• unbox (t): A 
(OE) 

Let p: T =$> t: A be a modal A term, and let V be a natural derivation of A from the 
hypothesis T, which is represented by this A-term. The construction of the desired realization 
r takes two rounds. First, we realize all the occurrences of □ in the derivation V of B from 
Ai,..., An by proof polynomials according to the algorithm from 6.2. As a result, we get 
a realization * of modalities in V such that CPNi h E* =$> F* holds for every intermediate 
derivation E =>■ F in V. The second round produces the desired realization r and proceeds by 
an induction on the steps of the A-term construction (i.e. on the construction of V). Without 
loss of generality we assume, that the proof variables used in the first round for * are all 
different from the ones we use in the second round. 

At the nodes of V corresponding to intuitionistic connectives use standard translations 
from 9.5. At a (D/) node perform a natural deduction step is performed: 

A => a Ai ... A =$■ OAk DAi,...,cAk => B 

A =► OB 

The corresponding step of the modal A-term assigning process is 

u:A =$■ si(u)-.nAi ... u:A =$> sk(ü)-.nAk Xi'.UAi,.. .,xk:UAk =$> t{x):B 

u:A=$ box(£)(s(t?)):DB 

By the construction of * 

A*=>h:Al, ..., A*^fk:A*k,    yi:A\,.. .,yk:A*k=> B*{y) 

for some proof polynomials h,...,fk. Also by the construction of * from 6.2 we may assume, 
that the variables yi,...,yk do not occur in A\,..., A\. By Lifting, find a proof polynomial 
p(y) such that 

yi-.Al, ..., yk:A*k^p{y):B*(y). 
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By the substitution [y/f] from the latter derivation we get 

h:Al ..., fk:Al^p{f):B*{f). 

And by the induction hypothesis, 

u:A* ^ s{(«):/!:AJ,       ...,      ü:A* ^ sr
k(u):fk:A*k. 

By Lifting (corollary 8.2),, construct a proof polynomial g(x) such that 

x1:f1:A*1,...,xk:fk:A*k=>g(x):p(f):B*(f), 

by substitution, 
s[:f1:Al,...,sk:fk:At^g(J(Ü)):p(f):B*(f), 

and, by the transitivity of =^ , 

ü:A*^g(s->(Ü)):p(f):B*(f). 

Let (box(i))r = gföiü)). 

At a (üi?)-node of 2? we have a figure 

u:T =*► £(£):DA 

tTiT =^ unbox(i)(u):A 

which corresponds to a natural deduction step from r =>■ OA to T => A. By the realization * 
we have T* => A*. Use the standard transformation (: E) from 9.5. to construct h(x) and a 
pure proof 

u:T* ^h{u):A*. 

Put (unbox(i))r = h. 
-4 

10    Conclusions 

In this paper we concentrated on internal semantical and structural questions of CP and on 
building a decent realization of modal logic and A-calculi in CP. We have not addressed yet 
such an appealing issue as rewriting the entire CP in a pure A way without proof constants 
but with extra operations on terms. In a way such a presentation of CP would correspond 
to a transition from the a combinatory system to a A-style system. From the logical point 
of view this would mean a transliteration of proof terms from the Hubert style basis to the 
natural deduction basis. 
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The Logic of Proofs has has a solid provability semantics and a more expressive language 
than either modal logic or the A-calculus. The ability of the Logic of Proofs to emulate 
both modal logic and A-calculus comes at some price. Modal logic and traditional A-calculi 
cover only fractions of CP but instead enjoy nice symmetries, transparent models, normal 
forms, etc. Modal and A presentations of the same facts are usually more compact than the 
corresponding presentations via proof polynomials. Modality and A's may be regarded as 
higher level languages for corresponding fragments of Logic of Proofs. 

Proof polynomials reveal the dynamic character of modality. The realization of <S4 in CP 
provides a fresh look at modal logic and its applications in general. Such areas as modal 
A-calculi, polymorphic second order A-calculi, A-calculi with types depending on terms, non- 
deterministic A-calculi, etc., could gain from their semantics as proof polynomials delivered 
by CP. 

Logic of Proofs for the second order arithmetic naturally requires quantifiers over proposi- 
tions. Such a logic should accomodate second order polymorphic A-calculi (cf. [15], [32], and 
supply them with provability semantics. 
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